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SUMMARY 

The problem of three-dimensional laminar natural convection in a vertical enclosure with an inner square 
rod is treated by a numerical method in boundary-fitted co-ordinates. The inner and outer cylinders are 
heated and cooled, respectively, to maintain different constant surface temperatures. The horizontal enclosure 
surfaces are maintained at adiabatic conditions. The Prandtl number is that of air, 0.703, and the Rayleigh 
numbers span the conduction, transition and boundary layer regimes of flow. The radius ratio is 1, and 
the aspect ratio (cylinder length divided by maximum annular gap) is 1. The results of the study provide 
data useful in the design and performance assessment of nuclear reactor spent fuel shipping casks. 

KEY WORDS Cavity Flow Three-dimensional Primitive Variables Navier-Stokes Equations Boundary-fitted 
Co-ordinates SIMPLE Solution Scheme 

INTRODUCTION 

Numerical computation of three-dimensional natural convection in an enclosure is still far from 
routine, but it has important practical applications. Energy-related applications have stimulated 
much of the current interest in this area. Some specific application areas include compact 
electronic packaging, nuclear reactor safety, shipping containers for spent nuclear fuel, residential 
heating and cooling and heat removal from transformers in power plant applications. A 
configuration of practical importance that simulates a type of shipping container for the 
transportation of spent fuel is a vertical enclosure consisting of an inner square rod bounded 
by a circular enclosure. This geometry is also of interest in the pool storage of spent fuel. The 
natural convection flow phenomenon in this enclosure geometry is three-dimensional in nature 
and, numerically, involves the simultaneous solution of the three-dimensional Navier-Stokes 
and energy equations. 

Natural convection in a cylindrical annulus configuration has attracted a significant amount 
of attention, and a review of the studies involving this geometry was presented by Kuehn and 
Goldstein.' However, most of the studies reported were for horizontal concentric cylinders with 
infinite axial length, enabling the convective flow to be regarded as two dimensional. 

Recent improvements in the processing speed and memory capacity of digital computers have 
placed numerical computation of three-dimensional natural convection within reach of many 
investigators. Several such numerical studies have been reported, mostly for rectangular 
enclosures. Aziz and Hellums2 obtained numerical solutions to the transient governing equations 
for a rectangular configuration by means of an alternating direction implicit (ADI) method. 
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Their main objective was to demonstrate the feasibility of using a vector potential in the 
transformation of the governing flow equations. Mallinson and developed the false 
transient method and applied it to the problem of three-dimensional natural convection in a 
box, employing similar formulations of the governing equations. To avoid certain problems 
involved in the numerical representations of boundary conditions in the approach of previous 
 investigator^,^.^ Chan and Banerjee6 adopted a different approach. They developed a numerical 
technique based on the marker and cell (MAC) method of Harlow and Welch,7 applying it to 
the analysis of three-dimensional natural convection in a rectangular enclosure. 

Only a limited number of computational studies have been reported on natural convection 
in concentric cylindrical annuli that necessitated solution of the three-dimensional Navier-Stokes 
and energy equations. In studying the ducting system of a high-temperature gas-cooled reactor 
(HTGR), Takata et obtained numerical solutions to the natural convection in a vertical 
curved annulus containing porous material. In later work' they reported solutions to the natural 
convection problem in an inclined concentric cylindrical annulus. In both cases the vorti- 
city-vector-potential formulations of the governing equations were used. To eliminate the 
pressure terms in the Navier-Stokes equations, Tolpadi and Kuehn" also used a similar approach 
in studying conjugate conduction-natural-convection heat transfer from a horizontal isothermal 
cylinder with fins. Like their  predecessor^,^*^^^ they used an AD1 scheme to solve the parabolic 
part of the problem, i.e. the temperature and vorticity transport equations, and a successive 
over-relaxation method was used for the elliptic problem, i.e. the vector potential equations. 

The purpose of the present paper is to describe heat transfer and flow field solutions for the 
natural convection problem in a vertical enclosure for which the inner and outer cylinders are 
heated and cooled, respectively, to maintain different constant surface temperatures. The 
horizontal surfaces are assumed adiabatic. The Prandtl number is that of air, 0.703, and the 
Rayleigh number ranges from 0 to lo6. The radius and aspect ratios are fixed at the value 
of 1.  The numerical solutions to the flow equations are obtained in a boundary-fitted co-ordinate 
system following the approach taken by Chen et al.' as modified recently by the present authors 
for a two-dimensional problem1 and extended to three dimensions herein. 

NUMERICAL SOLUTION 

As indicated in the previous section, most of the numerical studies on three-dimensional natural 
convection have been based on the vorticity-vector-potential formulation of the governing 
equations. The attractive feature of this approach is that the pressure is eliminated from the 
momentum equations and the continuity equation is automatically satisfied by the definition of 
the vector potential. However, by using this approach, the number of unknowns becomes seven, 
namely the three components of the vorticity vector, the three components of the vector potential 
and temperature. It is also difficult numerically to specify the boundary conditions for vorticity. 
In order to avoid these complications, the present three-dimensional study is based on the 
primitive variables form of the governing equations. 

The finite-difference grid system 

The co-ordinate system adopted for the present study is based on the boundary-fitted curvilinear 
co-ordinate transformation algorithm of Thompson. ' The basic idea is numerically to generate 
a curvilinear co-ordinate system having co-ordinate lines coincident with each boundary of the 
physical region of interest. This approach enables accurate numerical representations of the 
boundary conditions to be accomplished without resorting to interpolative schemes that reduce 
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Figure 1 .  Grid distribution in boundary-fitted co-ordinates 

the accuracies of the numerical approximations for physical variables of interest. 
The co-ordinate system is generated by solving the following system of elliptic equations: 

ax<< - 2Bxgv + YX,, + J 2  Cx<P(5, V )  + x,Q(5,  ~ 1 1  = 0,  

a~g<-22py<V+y~ , ,+  J2CygP(5 ,y)+y ,Q(5 ,?)1  =O,  

where the transformation coefficients and Jacobian are defined by the following relationships: 
a = x ; + y ; ,  y = x ; + y g ,  2 

p = xgx, + Y < Y V >  J = X g Y ,  - X I l Y r .  

By specifying Dirichlet conditions on the boundaries, a grid system composed of (x, y )  values 
corresponding to discrete values of 5 and y is generated. The functions P and Q in equations (1) and 
(2)  are co-ordinate control functions that may be used to cause the co-ordinate lines to concentrate 
in certain parts of the region of interest. 

The present work uses a three-dimensional co-ordinate system for which the curvilinear co- 
ordinates in the plane normal to the enclosure axis are generated from equations ( 1 )  and ( 2 )  and the 
third (axial) co-ordinate is linearly transformed in the axial direction. The resultant grid 
distribution is shown in Figure 1 for one-eighth of the enclosure in a plane normal to the vertical 
axis. For later reference, grid lines next to the symmetry lines AB and DC are also shown in this 
figure. 

Transformed governing equations 

are given as follows: 
The dimensionless forms of the transformed governing equations as they appear in Reference 11 

Continuity equation. 

x-momentum equation. 
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z-momentum equation. 

where F = gL3/vz. 

Energy equation. 

In the above equations, S ,  and S ,  represent the two control volume surfaces of constant 5 and y, 
respectively; Vis the volume element bounded by these surfaces. Viscous dissipation and work 
done by other external forces have been neglected in the energy equation. The Boussinesq 
approximation 

P = P o C 1  - P o ( T -  To)] (8) 

is employed in expressing the body force term in the z-momentum equation as a linear function of 
the temperature. The equation of state is that of a perfect gas, which in dimensionless terms 
becomes 

T = h .  (9) 
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Figure 2. Notation used in formulating boundary conditions along the diagonal symmetry line 

The relationships between variables in the transformed and physical regions are given in 
Reference 11. Subject to the boundary and initial conditions, the above equations, from which the 
pressure, velocity and temperature distributions can be determined, completely describe the flow 
field. 

Boundary and initial conditions 

The inner and outer walls, and the top and bottom horizontal surfaces are modelled as no-slip 
surfaces; hence the velocity components u, u and w are set equal to zero along these surfaces. Owing 
to the nature of the natural convection problem under investigation, the solution to the governing 
equations is sought for in an eighth of the entire planar region. As shown in Figure 2, the solution 
domain is bounded by the symmetry lines 0-y,  the diagonal lines 0-d,  and the inner and outer 
cylindrical surfaces. 

To set the boundary conditions along the symmetry lines, the reflection method of Reference 14 
is employed. Extra grid lines EF  and GH denoted by i - 1 and i + 1, respectively, in Figure 1 are 
defined in order to exercise this method. Since the symmetry line AB (denoted by i )  lies on the y-axis 
of the physical geometry, 

and 
ui- 1 = - ui+ 1 

f i - l = f i + l ,  for f =u,w,porh .  

These conditions model the antisymmetric reflection of the u-velocity and the symmetric reflection 
of the other variables. In the above equations, ui - and ui-  are the velocity components along EF 
that are normal and tangential (parallel), respectively, to the symmetry line AB. 

The boundary conditions on the u and u velocities along the symmetry line DC (denoted by i )  are 
not as easily set as is the case along AB. With reference to Figure 2, the ‘reflected’ velocity 
components along GH are related to the computed velocity components along the i - 1 grid line 
through the following relationships: 

ui+ 1 = (VzD,)- 1 cos 0 
u i + l  = ( V 2 D ) i - l s i n ~  
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where 
(vzD)i-l =(u?--, +u?-1)-,’2 

w = 271 - 211/ + 0 

and 6 is the angle that the resultant velocity (Vz,,)i-l makes with the positive x-direction. 
Symmetric reflection of the other variables is accomplished with equations similar to 
equation (1 1). 

The top and bottom surfaces are kept adiabatic, implying that 

- = 0, for z = 0 or H ,  
aT 
aZ 

and the inner and outer boundaries are maintained isothermal at  Th and T, respectively. Initially, 
the fluid is stationary at a uniform temperature and pressure of atmospheric conditions. All 
constant property values are evaluated at the arithmetic mean value of Th and T,. 

MODIFIED SOLUTION METHOD 

A staggered mesh system is adopted for the derivations and solution of the finite difference 
approximation to the integral flux equations. Details of most of the derivations can be found in 
Reference 11. The velocities are computed at  the intersections of the numerically generated grid 
lines, and the other variables are computed and stored in the centre of the cell formed by the grid 
lines. One of the advantages of this approach is to avoid specifying pressure conditions at  the 
boundaries. 

The SIMPLE scheme of Patankar” is programmed to solve the finite difference equations 
resulting from the discretization. The algorithm requires that a pressure correction equation be 
derived and solved at each iteration level of the solution procedure. Details of the derivation of the 
pressure correction equation in a boundary-fitted coordinate system can be found in Reference 16. 
The resulting equation at each computational node can be cast in the form 

9 3  

in which S is the source term equal to the residual mass obtained from the finite-differenced 
continuity equation with a velocity field that does not satisfy the continuity equation. The 
derivation of the discretized equatlon for S in a boundary-fitted staggered mesh is also contained 
in Reference 16. 

For a specified Rayleigh number, the SIMPLE algorithm is exercised in solving the resulting 
finite-difference equations in a time-marching manner until a steady state is achieved. Each 
iteration within a time step is equivalent to one sweep of the algorithm. The SOR iterative 
scheme is employed for the solution of the momentum, energy and pressure correction equations. 
At each iteration, the momentum equations are solved first, followed by the pressure correction 
equation. The pressure and the velocities are ‘corrected’ before the solution to the energy equation 
is obtained. The pressure correction equation at a node involves twenty-six other neighbouring 
computational nodes. To reduce the amount of computational work involved, the contributions 
to the pressure correction equation from nodes at  axial levels k - 1 and k + 1 were set equal to 
zero, prior to the iteration for p’ at axial level k .  Furthermore, to avoid divergence, it was found 
necessary to set the initial guess values for p’ as zero at the beginning of the inner iteration loop 
for the pressure correction values. 

It should be noted that in the original method” the contributions to the pressure-correction 
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equation of all neighbouring nodes are neglected, and no corrections are added to the velocities 
with the resultant pressure corrections. The modifications reported herein have been found to 
improve the convergence of the numerical scheme. 

RESULTS AND DISCUSSION 

Numerical results have been obtained for the enclosure problem in a Rayleigh number 
range of 0 to lo6. The Prandtl number was fixed at  0.703, and the enclosure radius and aspect 
ratios kept constant at  one. In employing the SIMPLE scheme to solve the finite-differenced 
governing equations, the pressure correction equations were solved in an inner loop of each 
iteration with the SOR scheme. In spite of the modifications to the solution scheme, the 
performance of the scheme was not particularly good, and was extremely sensitive to the relaxation 
parameters employed. One of the reasons for the slow convergence rate may be the truncation 
of some terms of the pressure correction equations. 

All numerical computations were carried out using the Howard University’s IBM 3033s 
computing facility. The majority of the computations were performed with a grid distribution 
of IMAX = 9 in the angular direction, JMAX = 15 in the radial direction and KMAX = 7 in 
the axial direction. It should be mentioned that because of the staggered mesh employed, a finer 
grid distribution, equivalent to JMAX = 30, is obtained for the evaluation of wall temperature 
gradients. To obtain a converged solution of the numerical scheme, it was required that the 
maximum absolute changes in the flow variables between consecutive iterations be less than 

Additionally, the residues of mass continuity and the other equations were required to be 
less than and lop3, respectively. 

For a grid distribution of 9 x 15 x 7, the central processing unit time on the IBM 30338 was 
about 12 for each iteration. To speed up convergence at a given Rayleigh number, the computation 
was commenced with input data derived from a previous lower Rayleigh number calculation. 
The iterations were performed in a time marching manner and since an implicit finite difference 
method was employed, there was no restriction on the time step used. Without under-relaxation 
of the flow variables, the numerical procedure would not converge. A range of relaxation factors 
(0.3-1.0) was therefore applied. A steady state was achieved when the number of iterations 
required for a converged solution within a time step was less than or equal to 3. 

To establish grid-independent results, several grid distributions were tested. The refinement 
of the grid system from 9 x 7 x 7 to 9 x 1 1  x 7 produced differences of 3.8 per cent and 11.2 per 
cent in the average Nusselt number for Ra = lo5, respectively. Further refinement to a 9 x 15 x 7 
system produced changes of 0 9  per cent and 2-9 per cent for the same Rayleigh numbers. The 
trend in the average Nusselt number on grid refinement is depicted in Figure 3 and, as expected, 
the Nusselt number achieves an asymptotic value as the total number of grid points is increased. 

Owing to the non-existence of published results on the enclosure geometry of interest, it was 
not possible directly to assess the accuracy of the present results. However, to demonstrate the 
validity and reliability of the scheme for producing meaningful and accurate results, test calculations 
were performed on a coaxial vertical cylinder arrangement studied by other investigators. 7-19 
The inner and outer cylinders were maintained at different constant temperatures with adiabatic 
conditions on the horizontal surfaces. 

Results for the test computations were obtained for a Rayleigh number range of 10 to lo4, a 
radius ratio of 2, an aspect ratio of 1 and a Prandtl number of 0.703. The mean Nusselt numbers 
computed by the present numerical scheme were in good agreement with those of Schwab and 
DeWitt.17 The comparison is shown graphically in Figure 4. Unlike the present numerical scheme, 
in which the full three-dimensional equations were solved, Schwab and DeWitt’ took advantage 
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of the axisymmetrical nature of the problem and solved only the two-dimensional governing 
equations. Further discussion of the computed flow and temperature fields as well as the heat 
transfer data in the form of Nusselt numbers, is presented in the following sections. 

Temperature field 

Plots of isotherms for Rayleigh numbers up to lo6 at various axial and angular positions are 
shown in Figures 5-9. By defining a new temperature variable T* = (T  - Tc)/(Th - Tc),  the outer 
boundary temperature is shown as T* = 0 and the inner boundary temperature as T* = 1 .  To 
facilitate comparisons, the number of isotherms plotted is kept at 1 1  for each Rayleigh number 
considered. The temperature increment between isotherms is also kept uniform at 0.1. For 
Rayleigh numbers less than lo3, the isotherms at selected axial planes are evenly distributed 
between the maximum and minimize temperatures. This demonstrates that the effect of convection 
is practically negligible at these Rayleigh numbers and that the predominant mode of heat transfer 
is by conduction. A t  Reyleigh numbers greater than lo3, enhanced crowding of isotherms near the 
inner boundary is observed, indicating the development of the thermal boundary layer. As the 
Rayleigh number increases beyond lo3, the temperature gradient becomes steeper and the 
boundary layer grows thinner. It is also observed that the thermal boundary layer develops closer 
to the inner boundary near the bottom of the configuration (Figures 5 and 6 )  and closer to the outer 
boundary near the top of the enclosure (Figure 7). 
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Figure 5. Dimensionless isotherms at a selected axial level: z = 0.834, AT* = 0.1; (a) Ra = lo3, (b) Ra = lo4, (c) Ra = lo5, 

(d) Ra = lo6 

- T *  = 1  

T* 

, 

= O  

= O  

T* = 1  u 

(b) (4 
Figure 6. Dimensionless isotherms at a selected axial level: z = 0.4167, AT* = 0.1; (a) Ra = lo3, (b) Ra = lo4, (c)  Ra = lo5, 

(d)Ra = lo6 
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(b) (d) 

Figure 7. Dimensionless isotherms at a selected axial level: z = 0.9164, AT* = 0.1; (a) Ra = lo3, (b) Ra = lo4, (c) Ra = lo5, 
(d) Ra = lo6 

(b) (4 
Figure 8. Dimensionless isotherms at a selected angular plane: x = 0.0834, AT* = 0.1; (a) Xu = lo3, (b) Ra = lo4, 

(c) Ra = lo5, (d) Ra = lo6 
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(b) (d) 

Figure 9. Dimensionless isotherms at a selected angular plane: x = 0.9167, AT* = 0.1; (a) Ra = lo3, (b) Ra = lo4, 
(c) Ra = lo5, (d) Ra = lo6 

Similar conclusions can be drawn by examining the isotherm plots (Figures 8 and 9) for selected 
angular positions about the vertical axis of the configuration. Each such angular plane is identified 
by a distance x measured from the symmetry line 0-y (Figure 2). The plots of isotherms in the 
angular planes show remarkable deviations from the conduction patterns for Rayleigh numbers 
greater than lo3. The transition from conduction to mostly convection appears to occur for a 
Rayleigh number between lo3 and lo4. The crowding of isotherms in the vicinity of the inner and 
outer walls, suggesting the development of boundary layers for higher Rayleigh numbers, is 
observed in Figures 8 and 9. Similar observations about the conduction, transition and boundary- 
layer regimes have been reported by at least one other investigator.20 A variation in the 
development of the boundary layer on the inner wall is observed from the bottom to the top of the 
configuration. This is partly due to the presence of horizontal adiabatic surfaces, and the mixing of 
hot and cold fluid near the top of the enclosure. A similar phenomenon is observed for the 
boundary layer development on the cold wall. 

The appearance of temperature inversions in the isotherm plots (Figures 8 and 9) is a 
characteristic of natural convection phenomena. The existence of secondary maximum and 
minimum temperature fields between the hot and cold walls is indicative of these inversions. In the 
present study, the temperature inversions are observed for Rayleigh numbers greater than 5 x lo4. 
The comparison of isotherms at different angular planes at  a Rayleigh number of lo5 reveals that 
the gap size between the inner square and the outer cylinder has an influence on the strength of the 
convection phenomenon. It is observed (Figures 8 and 9) that the temperature inversions are more 
pronounced at  the angular position x = 0.0834 than at  the position x = 0.9167, which is close to the 
corner of the inner square rod. 

Flow ,field 

To obtain information about the flow structure, plots of velocity vectors for Rayleigh numbers 
lo3 to lo6 at selected axial and angular planes are presented in Figures 10 -14. From the plots of 
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Figure 10. Plots of velocity at selected axial planes. Ra = lo3: (a) z=O.8333, (b) z=O.5, (c) z=O.1667: Ra = lo4: 
(d) z = 0.8333, (e) z = 0.5, (f) z = 0.1667 
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Figure 11. Plots of velocity at selected axial planes. Ra = 10': (a) z = 0.8333, (b) z = 0.5, (c) z = 0.1667 
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Figure 12. Plots of velocity at selected axial levels. Ra = lo6: (a) z = 0.8333, (b) z = 0.6667, (c) z = 0.5, (d) z = 0.3333, 
(e) z = 0.1667 
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Figure 13. Plots of velocity at a selected angular plane. x = 0.0 Ra = lo3, (b) Ra = lo4, (c) Ra = lo5, (d) Ra = 10' 
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(a) - 2.6 x 1 02mk  (b) - 1 .O x 1 O"m/s 

(c)  -3 x 10-'m/s (d)-+ 6 x 10-'m/s 
Figure 14. Plots of velocity at a selected angular plane. x = 0.8333: (a) Ra = lo3, (b) Ra = lo4, (c) Ra = lo5, (d) Ra = lo6 

the resultant planar velocity (VZD) in Figures 10 -12, it can be inferred that the direction of fluid flow 
is towards the hot wall near the bottom of the cavity and in the opposite direction near the top of 
the enclosure. The resultant planar velocity changes direction through 180" as the fluid moves 
along the axial direction, attaining close to zero values at approximately z = 0.5 for Rayleigh 
numbers less than lo6. 

Further inferences about the hydrodynamic boundary layer variation with Rayleigh number 
can be drawn from Figures 13 and 14. The development of the boundary layer is clearly shown. At 
each Rayleigh number the velocity increases from zero at the walls, reaches a maximum value and 
decreases to an almost stagnant region in the middle of the enclosure. The maximum velocity 
increases with increasing Rayleigh number. In contrast to the results of Davis and Thomas, l 8  no 
flow reversals are observed in the range of Rayleigh numbers studied, resulting in unicellular fluid 
motion in the cavity. This difference in flow patterns may be due to the low aspect and radius ratios, 
and the difference in geometrical configurations of the two studies. 

Overall heat transfer results 

The heat transfer parameter of greatest practical interest is the Nusselt number, defined as the 
ratio of convection heat transfer to conduction in a fluid slab of thickness equal to the reference 
length. Since the problem under study is three dimensional in nature, the local Nusselt number is a 
function of both axial and angular positions on the solid surfaces. A typical variation of the local 
Nusselt number in the enclosure of interest for Ra = 5 x lo4 is shown in Figure 15 for the inner 
surface. 

The horizontal average Nusselt number NU,,  at an axial level is defined as 

Nu - 1 J'' Nu(<,  [ = constant) d< 
, - 5  0 
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Figure 15. Distribution of local Nusselt number on the inner surface: Ra = 5 x lo4 

and the vertical average Nusselt number Nu, is similarly defined as 

Nuv = d jl Nu(5 = constant, 1) di .  

The overall (total) average Nusselt number Nu is obtained by evaluating the double integral given 
bv 

where the local Nusselt number N u ( < ,  1) is defined by the relationship 

Nu(<,  0 = qJ!J/k(Tw - To). 

With these definitions, the variations of%, and Nuv with Rayleigh number for both inner and 
outerwalls are presented in Figures 16 and 17. Examination of Figure 16 shows that N u ,  decreases 
slightly with increasing Rayleigh number up to 5 x lo3 near the top of the cavity on the inner 
boundary. A similar observation for NuH is made for the outer boundary but at the bottom of the 
enclosure. Similar to the observations made by Davis and Thomas,18 the NuH variation achieves 
higher values near the bottom of the cavity for Rayleigh numbers higher than lo3 on the inner 
boundary (Figure 16). The trend is the reverse on the outer boundary where Nu, attains 
asymptotic values at  the top of the enclosure. The presence of the corner on the inner body is found 
to increase the average vertical Nusselt number Nu,; however, there is little variation in Nu, on 
the cold surface (Figure 17). 

The total average Nusselt number Nu variation with Rayleigh number is presented in Figure 18 
for both the inner and outer boundaries. From these plots, three distinct regions of heat transfer 
can be determined. These are the conduction region for 0 d Ra < lo3; the transition region for 
lo3 < Ra < 5 x lo3 and the laminar boundary layer region that prevails in the Rayleigh number 
range of 5 x lo3 to lo6. 

- 

CONCLUSION 

Numerical results have been obtained, yielding for the first time information about the three- 
dimensional motion and heat transfer due to natural convection occurring in a vertical enclosure 
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Figure 16(a). Variation of Nu, on inner surface as a function of axial distance 
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Figure 16(b). Variation of Nu, on outer surface as a function of axial distance 
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Figure 17(b). Lateral variation of %, on outer surface 
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Figure 18(a). Variation of inner body average Nusselt number as a function of Rayleigh number 
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Figure 18(b). Variation of outer body average Nusselt number as a function of Rayleigh number 

formed by a square rod inside a concentric cylinder. The computations required modification and 
extension of a previously developed numerical scheme. Test calculations to verify the modified 
numerical scheme have produced results that compare favourably with published results. 

For the enclosure geometry of interest, results have been obtained for air ( P r  = 0.703) in the 
Rayleigh number range of 0 to lo6 where the aspect and radius ratios were kept fixed at 1. The 
results show that details of the flow and the Nusselt number depend upon the Rayleigh number. 
For all the Rayleigh number results obtained, unicellular flow patterns were observed to occur in 
the enclosure. The distribution of the derived heat transfer data on the inner boundary revealed 
that the local Nusselt number attains its highest value near the bottom of the enclosure close to the 
inner corner region. From the distribution of the total average Nusselt number with Rayleigh 
number, the heat transfer results can be correlated in the form %=constant x Ram. These 
correlations are 

Nu = 2 . 8 1 6 R ~ ~ ' ~ ' ~ ( i n n e r  wall), 
Nu = 1 . 7 9 5 R ~ ~ ' ~ ' ~ ( o u t e r  wall), 

- 

- 
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in the conduction region, and. 
__ 
N U  = 0 4 7 0 R ~ ~ ' ~ ~ ~ ( i n n e r  wall), 
Nu = 0 . 3 0 2 R ~ ~ ' ~ ~ ~ ( o u t e r  wall), 

in the laminar boundary layer region. These correlations are found to predict the original data to 
within a difference of less than five per cent. 

- 
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a 

b 
CP 
D 
9 
h 

H 
IMAX, JMAX, KMAX 
J ?  J I Z  
k 
L 
N u  
N u  
N u  " 

- 

- 

N u ,  

P' 
P 

Pr  
4 

Ra 
G 

NOMENCLATURE 

a positive constant prescribing the linear transformation in the z 
direction 
side of square rod 
specific heat at  constant pressure 
outer cylinder diameter 
acceleration due to gravity 
dimensionless specific enthalpy = h/ho; an overbar denotes a dimen- 
sional quantity 
height of enclosure 
grid distribution in 5, q, < directions 
Jacobians of transformation 
thermal conductivity 
reference length = (D - b)/2 
local Nusselt number based on maximum gap width 
average Nusselt number 
average Nusselt number along a constant vertical line 
average Nusselt number along a constant horizontal line 
dimensionless pressure = (p - &)/po Vg 
pressure-correction 
Prandtl number 
heat flux in physical geometry 
dimensionless heat flux in transformed geometry 
Rayleigh number = gPL3( Th - T,) Pr/v2 
dimensionless time = W0/L 
dimensionless temperature = Tcpo/ho 
dimensionless components of velocity in the physical geometry 
5, r]  and [ components of velocity in the transformed geometry 
reference velocity = v / L  
Cartesian co-ordinate directions 
transformation coefficients 
angular positions 
co-ordinate directions in the transformed geometry 
density 



V 

P 
z 

THREE-DIMENSIONAL NATURAL CONVECTION 

kinematic viscosity 
volumetric coefficient of thermal expansion 
dimensionless shear stress in transformed co-ordinates 

outer and inner surfaces 
indices for grid points 
reference quantity 
first partial derivatives 
static value 
wall value 
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